HIGH-TEMPERATURE PROGRAMMABLE SHUNT REGULATOR

FEATURES

▲ Adjustable output voltage from 2.5V to 35V.
▲ Operational beyond the -60°C to +230°C temperature range.
▲ Low dynamic output impedance.
▲ Sink current capability 500µA to 50mA
▲ Low temperature coefficient (\(\Delta V_{REF}=35\text{mV}\) typ).
▲ 2.55V reference with 6% accuracy.
▲ Fast turn-on response.
▲ Shut-down mode.
▲ Stable over a continuous range of load capacitors (27nF min).
▲ Monolithic design.
▲ Ruggedized SMT and thru-hole packages.
▲ Also available as tested bare die.

APPLICATIONS

▲ Reliability-critical, Automotive, Aeronautics & Aerospace, Down-hole.
▲ Shunt regulators, voltage clamping, voltage references, voltage regulators, switching regulators, feedback networks, voltage monitors, current sources.

DESCRIPTION

XTR431 is a high-reliability, high-temperature version of the well known "431" shunt voltage regulator. It operates as a 3-terminal shunt regulator with an total drift of the reference voltage as low as 35mV (typical). The output voltage may be set from 2.55V to 35V by selecting the value of two external resistors implementing a divider network.

The XTR431 is able to reliably operate over a wide range of currents from 500µA to 50mA and load capacitors from 27nF and up. Functionality features include shut-down mode and low dynamic output impedance.

This part can be used as a high-reliability, high-temperature replacement of zener diodes in many applications such as onboard regulation, adjustable power supply and switching power supplies. The fact of operating as a zener diode makes the XTR431 convenient to be used as a positive or negative regulator.

Special design techniques were used allowing the XTR431 parts to offer a precise, robust and reliable operation in critical applications. Full functionality is guaranteed from -60°C to +230°C, though operation well below and above this temperature range is achieved.

The XTR431 has been designed to reduce system cost and ease adoption by reducing the learning curve and providing smart and easy to use features.

XTR431 is available in ruggedized SMT and thru-hole packages. Parts are also available as tested bare dies.

PRODUCT HIGHLIGHT

Shunt Regulator

Series Regulator

High-current Shunt Regulator

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Product Reference</th>
<th>Temperature Range</th>
<th>Package</th>
<th>Pin Count</th>
<th>Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTR431-D</td>
<td>-60°C to +230°C</td>
<td>Ceramic side brazed DIP</td>
<td>8</td>
<td>XTR431</td>
</tr>
<tr>
<td>XTR431-FE</td>
<td>-60°C to +230°C</td>
<td>Gull-wing flat pack with ePad</td>
<td>8</td>
<td>XTR431</td>
</tr>
<tr>
<td>XTR431-TD</td>
<td>-60°C to +230°C</td>
<td>Tested bare die</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other packages and packaging configurations possible upon request. For some packages or packaging configurations, MOQ may apply.
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage on CATHODE to ANODE</td>
<td>-1.5 to 40V</td>
</tr>
<tr>
<td>Voltage on VREF to ANODE</td>
<td>-0.5 to 6.0V</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-70°C to +230°C</td>
</tr>
<tr>
<td>Operating Junction Temperature Range</td>
<td>-70°C to +300°C</td>
</tr>
<tr>
<td>ESD Classification</td>
<td>1kV HBM MIL-STD-883</td>
</tr>
</tbody>
</table>

Caution: Stresses beyond those listed in “ABSOLUTE MAXIMUM RATINGS” may cause permanent damage to the device. These are stress ratings only and functionality of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to “ABSOLUTE MAXIMUM RATINGS” conditions for extended periods may permanently affect device reliability.

PACKAGING

- **Ceramic Side Brazed DIP8**
 - XTR431-D
 - Top view:
 - CATHODE: 1, 2, 3, 4
 - VREF: 8
 - N.C.: 5, 6, 7

- **CDFP8 with ePad**
 - XTR431-FE
 - Top view:
 - CATHODE: 1, 2, 3, 4
 - ANODE: 5, 6, 7
 - N.C.: 8
 - ePAD on bottom of package connected to CATHODE. Pin #1 shall be used as main CATHODE connection. ePAD can be left floating on the PCB.

BLOCK DIAGRAM

- Diagram of the bandgap reference circuit with connections to CATHODE, ANODE, and VREF.
PIN DESCRIPTION

XTR431-D

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CATHODE</td>
<td>Cathode terminal of equivalent zener diode.</td>
</tr>
<tr>
<td>2</td>
<td>N.C.</td>
<td>No internal connection.</td>
</tr>
<tr>
<td>3</td>
<td>N.C.</td>
<td>No internal connection.</td>
</tr>
<tr>
<td>4</td>
<td>N.C.</td>
<td>No internal connection.</td>
</tr>
<tr>
<td>5</td>
<td>N.C.</td>
<td>No internal connection.</td>
</tr>
<tr>
<td>6</td>
<td>ANODE</td>
<td>Anode terminal of equivalent zener diode.</td>
</tr>
<tr>
<td>7</td>
<td>N.C.</td>
<td>No internal connection.</td>
</tr>
<tr>
<td>8</td>
<td>VREF</td>
<td>Feedback of error amplifier.</td>
</tr>
</tbody>
</table>

XTR431-FE

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CATHODE</td>
<td>Cathode terminal of equivalent zener diode. It is mandatory to connect this pin.</td>
</tr>
<tr>
<td>2</td>
<td>ANODE</td>
<td>Anode terminal of equivalent zener diode.</td>
</tr>
<tr>
<td>3</td>
<td>ANODE</td>
<td>Anode terminal of equivalent zener diode.</td>
</tr>
<tr>
<td>4</td>
<td>N.C.</td>
<td>No internal connection.</td>
</tr>
<tr>
<td>5</td>
<td>N.C.</td>
<td>No internal connection.</td>
</tr>
<tr>
<td>6</td>
<td>ANODE</td>
<td>Anode terminal of equivalent zener diode.</td>
</tr>
<tr>
<td>7</td>
<td>ANODE</td>
<td>Anode terminal of equivalent zener diode.</td>
</tr>
<tr>
<td>8</td>
<td>VREF</td>
<td>Feedback of error amplifier.</td>
</tr>
<tr>
<td>ePAD</td>
<td>CATHODE</td>
<td>The ePAD can be connected to CATHODE on PCB or left floating, but it cannot be used as main CATHODE connection.</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTR431-D (DIP8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance: J-C</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{\text{Th,J-C}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance: J-A</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{\text{Th,J-A}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XTR431-FE (DFP8 with exposed pad)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance: J-C</td>
<td>Measured on ePAD.</td>
<td>7</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{\text{Th,J-C}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance: J-A</td>
<td>ePAD thermally connected to 3cm² PCB copper</td>
<td>70</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{\text{Th,J-A}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathode-Anode Voltage V_{KA}</td>
<td>2.5</td>
<td>35</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Feedback Input Voltage V_{VREF}</td>
<td>-0.3</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Cathode Current I_{KA}</td>
<td>0.5</td>
<td>50</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Junction Temperature T_J</td>
<td>-60</td>
<td>230</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

1. Depending on cathode voltage, min-max cathode current range can be limited.

2. Operation beyond the specified temperature range is achieved.

ELECTRICAL SPECIFICATIONS

Unless otherwise stated, specification applies for $I_{KA}=10mA$, $V_{KA}=0V$, $R_2=100k\Omega$ (VREF-ANODE), -60°C<T<230°C.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Voltage V_{VREF}</td>
<td>Cathode connected to V_{VREF}, $I_{KA}=1mA$, $T_C=85°C$</td>
<td>2.40</td>
<td>2.55</td>
<td>2.70</td>
<td>V</td>
</tr>
<tr>
<td>Deviation of Reference Voltage with Temperature ΔV_{VREF}</td>
<td>$I_{KA}=1mA$, $T_C=-60°C$ to 230°C, $V_{KA}=2.5V$ (Cathode connected to V_{VREF})</td>
<td>35</td>
<td>90</td>
<td></td>
<td>mV/V</td>
</tr>
<tr>
<td>Sensitivity on Cathode Voltage $\Delta V_{REF}/\Delta V_{KA}$</td>
<td>$I_{KA}=5mA$, $T_C=85°C$, $V_{KA}=3.3V$ to 10V, $V_{KA}=10V$ to 35V</td>
<td>3.8</td>
<td></td>
<td>0.05</td>
<td>mV/V</td>
</tr>
<tr>
<td>Reference Input Current I_{VREF}</td>
<td>$V_{KA}=2.5V$, $T_C=230°C$ (Worst case)</td>
<td>20</td>
<td>60</td>
<td></td>
<td>nA</td>
</tr>
</tbody>
</table>

Cathode (Static Characteristics)

- **Minimum Cathode Current for Regulation $I_{KA_{min}}$**
 - $T_C=230°C$ (Worst case)
 - $V_{KA}=2.5V$
 - $V_{KA}=10V$
 - $V_{KA}=35V$
 - 250 400 550 µA

- **Maximum Cathode Current $I_{KA_{Max}}$**
 - $T_C=230°C$ (Worst case)
 - $V_{KA}=2.5V$
 - $V_{KA}=3.3V$
 - $V_{KA}=10V$
 - 20 40 50 60 mA

- **Off-state Cathode Current I_{off}**
 - $V_{VREF}=0V$, worst case temperature condition $V_{KA}=35V$
 - $V_{KA}=3.3V$
 - $V_{KA}=10V$
 - $V_{KA}=35V$
 - 4.5 8.0 µA

- **Minimum Load Capacitance $C_{LOAD_{min}}$**
 - $V_{KA}=2.5V$ to 35V, $I_{KA}=500µA$ to 50mA
 - $T_C=60°C$ to 230°C
 - 27 50 nF

Cathode (Dynamic Characteristics)

<table>
<thead>
<tr>
<th>Output Impedance $Z_{SKA}=\delta V_{KA}/\delta I_K$</th>
<th>$V_{KA}=2.5V$, $I_{KA}=10mA$, fs8kHz</th>
<th>$T_C=60°C$</th>
<th>1.61</th>
<th>2.1</th>
<th>Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$T_C=100°C$</td>
<td>1.50</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_C=230°C$</td>
<td>1.87</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. ΔV_{REF} is defined as $|V_{REF_{Max}}-V_{REF_{Min}}|$ within the indicated range of temperature, input voltage or load current.
TYPICAL PERFORMANCE

Figure 1. Reference voltage (V_{REF}) vs. case temperature. $I_{KA}=1mA$. Cathode connected to V_{REF} ($V_{KA}=2.5V$). Values for 11 typical parts.

Figure 2. Deviation of reference voltage (ΔV_{REF}) over the -60°C to +230°C temperature range. $I_{KA}=1mA$. Cathode connected to V_{REF} ($V_{KA}=2.5V$). Values for 11 typical parts.

Figure 3. Reference voltage sensitivity on cathode voltage (V_{REF}) vs. cathode voltage for several case temperatures. V_{KA} from 3.3V to 40V. $I_{KA}=1mA$.

Figure 4. Minimum cathode current for regulation ($I_{KA,min}$) vs. cathode voltage (V_{KA}). $T_{C}=230°C$ (worst case). Values for 10 typical parts.

Figure 5. Cathode current vs. cathode voltage for several case temperatures. Limits show minimum needed and maximum guaranteed currents. Cathode connected to V_{REF} ($V_{KA}=2.5V$).

Figure 6. Cathode current vs. cathode voltage for several case temperatures. Limits show minimum needed and maximum guaranteed currents. Cathode connected to V_{REF} ($V_{KA}=2.5V$).
TYPICAL PERFORMANCE (CONTINUED)

Figure 7. Cathode current vs. cathode voltage for several case temperatures. Limits show minimum needed and maximum guaranteed currents. $R_1=33\,\text{kΩ}$, $R_2=10\,\text{kΩ}$ ($V_{KA}=10.75\,\text{V}$).

Figure 8. Cathode current vs. cathode voltage for several case temperatures. Limits show minimum needed and maximum guaranteed currents. $R_1=150\,\text{kΩ}$, $R_2=10\,\text{kΩ}$ ($V_{KA}=40\,\text{V}$).

Figure 9. Off-state cathode current (I_{off}) vs. case temperature for different cathode voltages. Values for 10 typical parts.

Figure 10. Reference input current (I_{ref}) vs. case temperature for several cathode voltages. Values for 10 typical parts.

Figure 11. Small-signal voltage amplification (A_v) vs. frequency for several case temperatures. $I_{KA}=10\,\text{mA}$. Values for 5 typical parts.

Figure 12. Test circuit for voltage amplification (A_v).
TYPICAL PERFORMANCE (CONTINUED)

Figure 13. Dynamic cathode-anode impedance (Z_{KA}) vs. frequency for several case temperatures. Cathode connected to V_{REF} (V_{KA}=2.5V), I_{KA}=10mA. Values for 5 typical parts.

Figure 14. Test circuit for dynamic cathode-anode impedance (Z_{KA}).

Figure 15. Equivalent input noise (V_n) vs. frequency for several case temperatures. Cathode connected to V_{REF} (V_{KA}=2.5V), I_{KA}=10mA. Values for 5 typical parts.

Figure 16. 10Hz-10kHz integrated input noise (E_n) vs. case temperatures. Cathode connected to V_{REF} (V_{KA}=2.5V), I_{KA}=10mA. Values for 5 typical parts.

Figure 17. Start-up for three case temperatures (-60°C, 85°C and 230°C). Cathode connected to V_{REF} (V_{KA}=2.5V), I_{KA}=10mA, C_{LOAD}=33nF.

Figure 18. Start-up for three case temperatures (-60°C, 85°C and 230°C). Cathode connected to V_{REF} (V_{KA}=2.5V), I_{KA}=10mA, C_{LOAD}=100nF.
TYPICAL PERFORMANCE (CONTINUED)

Figure 19. Start-up for three case temperatures (-60°C, 85°C and +230°C). $V_{KA}=40\,\text{V}$, $I_{KA}=10\,\text{mA}$, $C_{LOAD}=33\,\text{nF}$.

Figure 20. Start-up for three case temperatures (-60°C, 85°C and +230°C). $V_{KA}=40\,\text{V}$, $I_{KA}=10\,\text{mA}$, $C_{LOAD}=100\,\text{nF}$.
THEORY OF OPERATION

Introduction
The XTR431 is a SOI CMOS shunt voltage regulator able to operate from -60°C to +230°C, with voltages from 2.5V to 35V. As the XTR431 is built in a pure CMOS process, its internal structure is well different from those using BJTs in other commercial versions of the "431". This fact is mainly observed on the minimum operating voltage, stability behavior, in the start-up timing characteristics, as well as in the small reference and leakage currents.

The following image shows the typical shunt regulator application with external components. Capacitor C1 represents the parasitic capacitance between VREF and ANODE due to packaging and PCB routing. In cases where the parasitic capacitance C1 is above some tens of picofarads, a compensation capacitor C2 of some nanofarads may be needed. Capacitor Cout connected between ANODE and CATHODE is always needed.

General Considerations

Thermal considerations
The XTR431 has no internal thermal shutdown feature, allowing it to operate even above the -60°C to +230°C range. The user must ensure that the junction temperature will not exceed the temperature defined in the Absolute Maximum Ratings section for long periods and remain within the recommended temperature range whenever possible. Functionality can be demonstrated for temperatures well above 300°C (contact X-REL Semiconductor for further information).

Notice that above 200°C the VREF input current increases, resulting in an increase of the VREF voltage (IREF increase is equal to RV * IREF). This further increases the dissipated power which in turns increases the junction temperature. The value of R1 should therefore not be too large when the circuit is expected to operate at high cathode voltage and current.

Ground connection
The XTR431 anode pin should always be connected to the lower rail of the supply prior applying a cathode voltage. Accidental disconnecting of the anode under operation could damage the part.

Stability conditions
Conversely to BJT commercial versions of the "431", the XTR431 presents a continuous range of possible load capacitors. This range has minimum values which vary with the output cathode voltage, cathode current and operating temperature. This minimum load capacitance can be as low as 10nF for \(I_{\text{KA}} \leq 1 \text{mA} \) and temperatures above 25°C, though a minimum "one-fits-all" value of 27nF can be used for whatever cathode current and temperature condition.

If due to the layout of the substrate (ceramic or PCB) where the XTR431 is used, the parasitic capacitance \((C_p) \) between VREF and ANODE is large (some tens of pF), extra compensation capacitor C1 (1-10nF) may be needed.

Functional Features & Operation

Disable feature
Whenever the VREF terminal is pulled down below its internal 2.5V reference \((/EN \text{ in the image below is high}) \), the cathode current \(I_{\text{KA}} \) is quickly turned off. This means that, after this event, \(V_{\text{KA}} \) reaches the \(V_N \) voltage.

When the circuit is enabled back again \((/EN \text{ is low}) \), VREF will go up depending on \(R_1, R_2, C_p \) and \(C_1 \) values. VREF will then go to its steady state value of 2.5V once the cathode current settles again. A safe limit for \(|dV_{\text{REF}}/dt| \) is not to exceed 0.2V/\(\mu \text{s} \). Assuming that initially \(V_{\text{KA}}=V_N \).

\[
\frac{dV_{\text{REF}}}{dt} \approx \frac{V_N}{R_1 \cdot C_1} < 0.2 V/\mu \text{s}
\]

With \(R_1 \) fixed, the previous relation gives a minimum recommended \(C_1 \) value when the Enable functionality is used.
PACKAGE OUTLINES

Dimensions shown in mm [inches]. Tolerances ±0.13 mm [±0.005 in] unless otherwise stated.

Ceramic Gull-wing Flat pack with ePad DFP8

Ceramic Side Brazed Dual In-line DIP8

Part Marking Convention

Part Reference: XTRPPPPP
XTR X-REL Semiconductor, high-temperature, high-reliability product (XTRM Series).
PPPPP Part number (0-9, A-Z).

Unique Lot Assembly Code: YYWWANN
YY Two last digits of assembly year (e.g. 11 = 2011).
WW Assembly week (01 to 52).
A Assembly location code.
NN Assembly lot code (01 to 99).
IMPORTANT NOTICE & DISCLAIMER

Information in this document supersedes and replaces all information previously supplied. Information in this document is provided solely in connection with X-REL Semiconductor products. The information contained herein is believed to be reliable. X-REL Semiconductor makes no warranties regarding the information contained herein. X-REL Semiconductor assumes no responsibility or liability whatsoever for any of the information contained herein. X-REL Semiconductor assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. X-REL Semiconductor reserves the right to make changes, corrections, modifications or improvements, to this document and the information herein without notice. Customers should obtain and verify the latest relevant information before placing orders for X-REL Semiconductor products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. Unless expressly approved in writing by an authorized representative of X-REL Semiconductor, X-REL Semiconductor products are not designed, authorized or warranted for use in military, aircraft, space, life saving, or life sustaining applications, nor in products or systems where failure or malfunction may result in personal injury, death, or property or environmental damage. General Sales Terms & Conditions apply.

CONTACT US

For more information on X-REL Semiconductor’s products, technical support or ordering:

- Web: www.x-relsemi.com/products
- Tel: +33 456 580 580
- Fax: +33 456 580 599
- Sales: sales@x-relsemi.com
 www.x-relsemi.com/EN/Sales-Representatives
- Information: info@x-relsemi.com
- Support: support@x-relsemi.com

X-REL Semiconductor
90, Avenue Léon Blum
38100 Grenoble
France